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A B S T R A C T   

We propose a method to adjust contributions from upwind emissions to downwind PM2.5 concentrations to 
account for the differences between observed and simulated PM2.5 concentrations in an upwind area. Emissions 
inventories (EI) typically have a time lag between the inventory year and the release year. In addition, traditional 
emission control policies and social issues such as the COVID-19 pandemic cause steady or unexpected changes in 
anthropogenic emissions. These uncertainties could result in overestimation of the emission impacts of upwind 
areas on downwind areas if emissions used in modeling for the upwind areas were larger than the reality. In this 
study, South Korea was defined as the downwind area while other regions in Northeast Asia including China 
were defined as the upwind areas to evaluate applicability of the proposed adjustment method. We estimated the 
contribution of emissions released from the upwind areas to PM2.5 concentrations in South Korea from 2015 to 
2020 using a three-dimensional photochemical model with two EIs. In these two simulations for 2015–2020, the 
annual mean foreign contributions differed by 4.1–5.5 µg/m3. However, after adjustment, the differences 
decreased to 0.4–1.1 µg/m3. The adjusted annual mean foreign contributions were 12.7 and 8.8 µg/m3 during 
2015–2017 and 2018–2020, respectively. Finally, we applied the adjustment method to the COVID-19 pandemic 
period to evaluate the applicability for short-term episodes. The foreign contribution of PM2.5 during the lock-
down period in China decreased by 30% after adjustment and the PM2.5 normalized mean bias in South Korea 
improved from 15% to − 4%. This result suggests that the upwind contribution adjustment can be used to 
alleviate the uncertainty of the emissions inventory used in air quality simulations. We believe that the proposed 
upwind contribution adjustment method can help to correctly understand the contributions of local and upwind 
emissions to PM2.5 concentrations in downwind areas.   

1. Introduction 

Quantitative source-receptor analysis for a certain area can provide 
important information for air quality improvement such as pollutant 
emissions from the area as well as the impacts of those from surrounding 
areas on PM2.5 concentrations in the region of interest (Clappier et al., 
2017). In Northeast Asia, such analyses have been conducted with an 
aim to quantify the long-range transport of air pollutants between re-
gions using three-dimensional photochemical models (e.g., CMAQ, 
CAMx, and GEOS-Chem) and other tools (Itahashi et al., 2012; Wang 

et al., 2015; Choi et al., 2019; Bae et al., 2020a; Kumar et al., 2021). 
According to these studies, air pollutants emitted from China contribute 
to approximately 40–70% of total PM2.5 concentrations in South Korea, 
a country located downwind of China (Bae et al., 2020a; c; Kumar et al., 
2021). 

The accuracy of source-receptor analysis results is important in terms 
of information utilization for development and implementation of State 
Implementation Plans and population exposure assessment, etc. 
Accordingly, input data, such as emissions, should accurately reflect the 
actual status. An emissions inventory, as one of the main inputs for air 

* Corresponding author. 
E-mail addresses: bma829@ajou.ac.kr (M. Bae), byeonguk.kim@gmail.com (B.-U. Kim), hyun.kim@noaa.gov (H.C. Kim), woojh21@gmail.com (J.H. Woo), 

soontaekim@ajou.ac.kr (S. Kim).  

Contents lists available at ScienceDirect 

Environment International 

journal homepage: www.elsevier.com/locate/envint 

https://doi.org/10.1016/j.envint.2022.107214 
Received 6 January 2022; Received in revised form 13 March 2022; Accepted 24 March 2022   

mailto:bma829@ajou.ac.kr
mailto:byeonguk.kim@gmail.com
mailto:hyun.kim@noaa.gov
mailto:woojh21@gmail.com
mailto:soontaekim@ajou.ac.kr
www.sciencedirect.com/science/journal/01604120
https://www.elsevier.com/locate/envint
https://doi.org/10.1016/j.envint.2022.107214
https://doi.org/10.1016/j.envint.2022.107214
https://doi.org/10.1016/j.envint.2022.107214
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envint.2022.107214&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Environment International 163 (2022) 107214

2

quality simulations, is often prepared based on socioeconomic activity 
data (e.g., traffic volume and fuel consumption) and/or with observed 
emissions data. Therefore, there is usually a lag of two or more years 
between the period that the emissions inventory represents and its dis-
tribution (Wang et al., 2016b; Bae et al., 2020b). For example, from 
2013 to 2017, the SO2 and NOx emissions in China reportedly decreased 
by 59% and 21%, respectively (Zheng et al., 2018; Zhang et al., 2019). 
However, there is no available emissions inventory data after 2017. 
Moreover, we can expect substantial changes in emissions for January 
2020 due to the COVID-19 pandemic (Huang et al., 2021; Kim et al., 
2021c). Nevertheless, these changes cannot be accounted for if existing 
emissions inventories are used in modeling. If actual emissions trends 
are not reflected in air quality simulations, simulation results would 
show discrepancies with respect to the observed concentrations (Bae 
et al., 2020b). Particularly, the differences between the observed and 
simulated concentrations in upwind areas can affect uncertainty in the 
estimated contributions of upwind emissions on the air quality of 
downwind areas. It also can lead to uncertainties of environmental and 
health risk assessment. 

Previous studies have attempted to use observational data to better 
utilize the simulation results by considering the uncertainties in air 
quality simulations. Zhang et al. (2018) and Itahashi et al. (2021) 
attempted to adjust simulated wet deposition values using the ratio of 
the observed and simulated precipitation. Bae et al. (2017) attempted to 
adjust the contributions from various emission sources based on the 
observed concentrations in a receptor region. These methods, however, 
did not consider the simulation uncertainty over the upwind area spe-
cifically for the downwind areas. 

In this study, we propose an approach to adjust modeled contribu-
tions of emissions from upwind areas to the PM2.5 concentrations in a 
downwind area. The proposed contribution adjustment approach was 
designed to address the uncertainty of the simulation results for the 
upwind area by adjusting upwind emission impacts using ratios of 
observed PM2.5 concentrations to simulated PM2.5 concentrations in the 
upwind area. To evaluate the temporal extent of the applicability of the 
contribution adjustment approach presented in this study, we conducted 
not only a long-term analysis from 2015 to 2020 but also a short-term 
analysis for the COVID-19 pandemic period. 

2. Methods and data 

2.1. Contribution calculations and adjustment methods 

To analyze the contribution of upwind emissions to the PM2.5 con-
centrations in a downwind area, two types of methods can be used with 
three-dimensional air quality modeling. One is the tagging method that 
designates a marker for each modeled pollutant from a specific emission 
area or an emission source during the simulation and tracks the tagged 
pollutant throughout the physical processes and chemical reactions that 
the marked pollutant experiences in the model. The other is the brute 
force method (BFM) that estimates the zero-out contribution (ZOC) by 
taking the difference between a base run without any emission pertur-
bation and a sensitivity simulation by perturbing the emissions of a 
target source to a certain level. In this study, we used the BFM as follows. 
Northeast Asia including China was set as the upwind area (the source), 
and South Korea was set as the downwind area (the receptor). Westerly 
or northwesterly winds are prevalent in Northeast Asia (Itahashi et al., 
2013; Jeon et al., 2019). Additionally, backward trajectories also show 
that most of the air masses come from the western side of South Korea 
(Figure S1). The upwind area contribution (U ZOCBase) to the downwind 
area and the relative upwind area contribution (RU ZOCBase) were 
calculated as follows: 

U ZOCBase =
(

MODdownwind
Base − MODdownwind

Sens,ΔE

)
×

100%
ΔE(%)

(1)  

RU ZOCBase =
U ZOCBase

MODdownwind
Base

× 100(%) (2)  

D ZOCBase = MODdownwind
Base − U ZOCBase (3) 

where MODdownwind
Base and MODdownwind

Sens,ΔE denote the modeled concentra-
tion from the base run and the modeled concentration in the sensitivity 
simulation in the downwind area. The sensitivity simulation was per-
formed by reducing the emissions of all pollutants from Northeast Asia, 
except for South Korea by 50% (i.e., Δ E = 50). For BFM with a 100% 
reduction in emission, inaccurate (e.g., negative) contributions can be 
estimated in the vicinity of high emissions sources owing to the nu-
merical error and non-linear chemistry. Koo et al. (2009), Clappier et al. 
(2017), and Kim et al. (2017b) report that the contributions estimated 
using BFM with 20%, 50%, and 100% perturbations can be different 
from each other by up to 10%. In this study, considering the nonlinear 
relationship between emission-concentration and the recent rate of 
decrease in the Chinese emission, 38 ~ 60% as reported by Zheng et al. 
(2018), the reduction rate for the sensitivity run was set at 50%, 
consistent with Kim et al. (2017b) and Bae et al. (2020c). As defined in 
Eq. (3), the downwind contribution (D ZOCBase) was assumed to be the 
result of subtracting U ZOCBase fromMODdownwind

Base . 
Appreciable discrepancies between the observed and simulated 

concentrations in upwind areas lead to uncertainty in estimating the 
impact of upwind area emissions on air quality in a downwind area. In 
turn, this type of uncertainty prevents accurate accounting for culpa-
bility for the air quality status in the receptor region. Therefore, we 
adjusted the emissions impact from an upwind area to air quality in a 
downwind area based on the uncertainty of air quality simulation results 
in the upwind area. We call this method as the “upwind contribution 
adjustment” and defined the adjustment factor,AFupwind, as follows: 

AFupwind = OBSupwind/MODupwind
Base (4) 

where, OBSupwind and MODupwind
Base are the observed concentrations in 

the upwind area and the simulated concentrations in the upwind area by 
the base run. Previous studies (Wang et al., 2016a; Choi et al., 2019; 
LTP, 2019; Yim et al., 2019) have estimated the relative contribution of 
Japanese emissions to PM2.5 concentration in South Korea at less than 
2%. Therefore, AFupwind in this study was calculated using the observed 
and simulated concentrations in China. 

WithAFupwind, we estimated adjusted upwind contribution 
(U ZOCAdj) and relative adjusted upwind contribution (RU ZOCAdj) as 
follows: 

U ZOCAdj = U ZOCBase × AFupwind (5)  

MODdownwind
Adj = U ZOCAdj +D ZOCBase (6)  

RU ZOCAdj =
U ZOCAdj

MODdownwind
Adj

× 100(%) (7) 

where, MODdownwind
Adj denotes the adjusted modeled concentration in 

the downwind area. By definition, U ZOCBase and U ZOCAdj represent 
foreign contributions before and after adjustment, respectively. Like-
wise, RU ZOCBase and RU ZOCAdj are relative foreign contributions 
before and after adjustment, respectively. While the relative domestic 
contributions before and after adjustments, RD ZOCBase (%) and 
RD ZOCAdj (%), respectively were calculated as follows: 

RD ZOCBase = 100 − RU ZOCBase (8)  

RD ZOCAdj = 100 − RU ZOCAdj (9) 

Fig. 1 shows an example of an upwind contribution adjustment. 
Although this method cannot directly improve the uncertainty in the 
emission inventory, it was possible to evaluate the contribution 
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indirectly by considering the uncertainty in the simulation results. The 
adjustment method proposed in this study assumed that the simulation 
uncertainty in the upwind area is primarily caused by the emission 
uncertainty. However, notably, the uncertainty of the meteorological 
simulation can also affect the accuracy of the contribution estimate. 

2.2. Surface observation data 

To evaluate the meteorological simulation results, we compared the 
simulation results with the observed temperatures and wind speeds from 
the Meteorological Assimilation Data Ingest System (MADIS) sites in 
China and South Korea (https://madis.ncep.noaa.gov). The hourly sur-
face PM2.5 observation data from China and South Korea were used to 
evaluate the performance of the air quality simulation and to adjust 
upwind contributions with Eqs. (4) and (5). 

Notably, the number of observational stations for the surface air 
quality used in this study varied by year since observation stations were 
newly installed or closed in both China and South Korea. Fig. 2 shows 
the locations of the observation stations in 2020 and all available data 
obtained from the observation stations for each year from 2015 to 2020 
were used in this study. The total numbers of observational sites for 
PM2.5 in China and South Korea used in this study were 1610 stations 
maintained by the China National Environmental Monitoring Center 
(https://www.cnemc.cn/en) and 416 stations of the urban air moni-
toring network operated by the National Institute of Environmental 
Research of South Korea (https://www.airkorea.or.kr), respectively. 

2.3. Analysis period and input data preparation 

The analysis period of this study was from January 1, 2015 to 
December 31, 2020. For meteorological data for air quality simulations, 
the Weather Research and Forecasting (WRF; Skamarock et al., 2008) 
model version 3.9.1 was used. The WRF simulation was performed for 
15-day blocks with a one-day pre-run throughout the modeling period. 
The National Center for Environmental Prediction-Final (NCEP FNL; 
NCEP, 2000) was used as the initial and boundary meteorological field. 
Analysis nudging was performed for wind, temperature, and moisture 
above PBL for 6-hour intervals. WRF results were further processed with 
the Meteorology-Chemistry Interface Processor (MCIP) version 3.6 to 
prepare the model-ready meteorological input data for air quality sim-
ulations. Anthropogenic emissions were prepared by processing the 
foreign and domestic emissions inventories with the Sparse Matrix 
Operator Kernel Emissions (SMOKE; Benjey et al., 2001) version 3.1. 
Biogenic emissions were prepared with the Model of Emission of Gases 
and Aerosols from Nature (MEGAN; Guenther, 2006). Air quality sim-
ulations were performed using the Community Multiscale Air Quality 
(CMAQ; Byun and Schere, 2006) version 4.7.1. The CMAQ model was 
run with SAPRC99 (Carter, 2000) for gas-phase chemical mechanism 
and AERO5 for aerosol simulations including ISORROPIA for inorganic 
partitioning and RADM for aqueous-phase chemical reactions. Table 1 
summarizes the detailed simulation configurations of the WRF and 
CMAQ models. 

The meteorological and air quality simulation domain for Northeast 
Asia including China was set at a 27-km horizontal resolution (Fig. 2a). 
To simulate air quality in South Korea, a finer grid domain was set at a 9- 

Fig. 1. An illustrative example of how to estimate adjusted upwind contribu-
tions in downwind areas. OBSupwind and MODupwind

Base refer to the observed con-
centrations and the modeled PM2.5 concentrations by a base simulation in 
upwind areas, respectively. AFupwind is an adjustment factor. MODdownwind

Base de-
notes the PM2.5 concentrations with a base simulation in downwind areas. 
U ZOCBase and D ZOCBase indicate the contributions from the upwind and 
downwind areas to the downwind areas, respectively. U ZOCAdj is an adjusted 
value ofU ZOCBase. MODdownwind

Adj is the adjusted PM2.5 concentration in the 
downwind areas. 

Fig. 2. Modeling domains with (a) 27-km and (b) 9-km horizontal grid resolutions. Black squares and blue circles depict the locations of the Meteorological 
Assimilation Data Ingest System (MADIS) sites and surface air quality measurement sites, respectively. 
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km horizontal resolution (Fig. 2b). The base and sensitivity simulation 
results for the 27-km domain were used to extract boundary conditions 
for the 9-km domain runs to perform the foreign contribution analysis 
following the approach used by Bae et al. (2020c) (Table 2). 

To ensure that the proposed contribution adjustment method was 
applicable to a broad range of emission scenarios, we performed simu-
lations with more than one emission scenario. Specifically, we evaluated 
four emissions inventories frequently used for simulating air quality in 
Northeast Asia and selected two inventories that can represent a range of 
emission variations in the upwind area: CREATE 2015 (Woo et al., 2020) 
and KORUSv5 (Woo et al., n.d.). Details about our selection process and 
results are presented in Section 3.1. For the downwind area, the Clean 
Air Policy Support System (CAPSS) 2016 emissions inventory was used 
for all simulations. The CMAQ simulation results using emissions based 
on CAPSS 2016 and CREATE 2015 were termed “C15” while the CMAQ 
simulation results using emissions based on CAPSS 2016 and KORUSv5 
were termed “Kv5.” Therefore, all other input data and simulation 
configurations were identical between C15 and Kv5 except for the 
foreign emissions inventories. C15 and Kv5 spanned the entire study 
period from January 1, 2015 to December 31, 2020. 

3. Results 

3.1. Comparison of Chinese emissions in existing emissions inventories 

In CREATE 2015, MEIC 2017 (Zheng et al., 2018), REASv3 (Kur-
okawa and Ohara, 2020), and KORUSv5 emissions inventories, the dif-
ferences between the maximum and minimum emissions of Chinese SO2 
and PM2.5 were 160% and 88%, respectively. For other pollutants, the 
differences between the maximum and minimum emissions ranged from 
22% to 37% (Fig. 3). Among these four emissions inventories, CREATE 
2015 had the highest emissions while KORUSv5 had the lowest emis-
sions overall. Moreover, these two emissions inventories have been used 
in various studies for analyses of the air quality in Northeast Asia, 
including the 2016 KORUS-AQ field campaign (Choi et al., 2019; 
Crawford et al., 2021; Kim et al., 2021a; b). Thus, we selected these two 
inventories to reflect the uncertainty range to the greatest possible 
extent. 

The CREATE 2015 emissions were 17% to 105% higher for all sub-
stances (excluding VOCs) than the KORUSv5 emissions (Fig. 3). The SO2 
emissions were 27,425 ktons/year (KTPY) in CREATE 2015 and 13,374 
KTPY in KORUSv5, 50% less in KORUSv5 than CREATE 2015. VOC 
emissions were 22,644 KTPY in CREATE 2015 and 28,356 KTPY in 
KORUSv5. The spatial distributions of pollutant emissions represented 
in these two inventories were similar: The NOx, SO2, and PM2.5 emis-
sions were mainly emitted in large city areas, such as Beijing-Tianjin- 

Hebei (BTH) and the Yangtze River Delta (YRD) (Figure S2). 
The inventory years of the four emission inventories were 2015 for 

CREATE 2015 and REASv3, 2016 for KORUSv5, and 2017 for MEIC, 
respectively. As pointed out in the Introduction section, there is a time 
lag of several years between the release of the bottom-up inventories (e. 
g., 2015 to 2017) and the present time (e.g., 2021). To consider the 
uncertainty in the emissions inventory and the assessment of air 
pollutant emissions for recent years, top-down emissions can be esti-
mated based on surface or satellite observations. However, top-down 
emissions can only be estimated for substances that have available 
observational data. For PM2.5, there is uncertainty in the top-down 
emissions estimation itself due to the differences in the measurement 
methods and targets between satellite observation data (i.e., aerosol 
optical depth) and surface observation data (i.e., PM2.5) (Lorente et al., 
2017; Bae et al., 2020b; Elguindi et al., 2020). 

3.2. Model performance evaluation 

To evaluate the results of the meteorological simulation from 2015 to 
2020, the observed and simulated meteorological values for China and 
South Korea were compared at the meteorological observation stations. 
The mean observed and simulated 2-m temperatures for the modeling 
period were 15.2 and 14.8 ◦C, respectively (0.4 ◦C underestimation and 
correlation coefficient of 0.98). The daily mean observed 2-m temper-
ature value was high in winter and low in summer, and the meteoro-
logical simulation reproduced this seasonal variability (Figure S3). The 
mean observed and simulated 10-m wind speeds for the simulation 
period were 2.9 and 3.2 m/s, respectively (overestimation of 0.3 m/s 
and correlation coefficient of 0.73). Overestimation of surface wind 
speeds may result in the underestimation of surface-level air pollutant 
concentrations. 

The C15 results were evaluated using observational data of the cal-
endar year 2015 for consistency with the inventory year of CREATE 
2015, while the Kv5 results were evaluated with observation data of the 
calendar year 2016 for consistency with the inventory year for KOR-
USv5. C15 overestimated the average PM2.5 concentration over China in 
2015 by 6.3 µg/m3 (12.0% normalized mean bias; NMB) whereas Kv5 
underestimated in 2016 by 8.2 µg/m3 (–17.1% NMB) (Figure S4 and S5). 
C15 overestimated the mean SO2 concentration over China in 2015 by 
69.1%. This indicates a significant overestimation of SO2 emissions in 
the CREATE 2015 as reported by (Bae et al., 2020b). For South Korea, 
C15 overestimated the mean PM2.5 concentration in 2015 by 1.8 µg/m3 

(7.1% NMB) while Kv5 underestimated in 2016 by 6.0 µg/m3 (–23.0% 
NMB) (Figure S6 and S7). Kv5 underestimated the NO2 concentration in 
South Korea by 0.1 ppb. The underestimation was more pronounced in 
spring and winter (Figure S7). This is consistent with what has been 
reported in previous studies: the CAPSS emissions inventory possibly 
underestimated the NOx emissions in South Korea (Oak et al., 2019; Kim 
et al., 2020). Table 3 summarizes the performance evaluation statistics. 
At six supersites in South Korea, the observed secondary inorganic 
aerosol (SIA; SO4

2-, NO3
–, and NH4

+) concentrations were 10.7 µg/m3 in 
2015 and 9.2 µg/m3 in 2016, respectively. Moreover, the simulated SIA 
for C15 and Kv5 were 14.9 μg/m3 in 2015 and 11.4 μg/m3 in 2016, 
respectively. The observed and simulated ratios of SIA and PM2.5 were 
0.4 and 0.6 in 2015, and 0.4 and 0.7 in 2016, respectively. Both simu-
lations had overestimated the SIA concentrations. This overestimation 
tendency was most likely due to the overestimation of NO3

– (Table S1). 

3.3. Deviation in modeled annual and monthly mean PM2.5 
concentrations 

The annual mean PM2.5 concentration in China was 52.7 µg/m3 in 
2015. Particularly, the annual mean PM2.5 concentration in BTH was 
67.1 µg/m3 in 2015. That was 27% higher than that of all the areas over 
China in 2015. Fig. 4 shows that annual mean PM2.5 concentrations in 
China had steadily decreased since 2015. In 2020, it was less than 60 µg/ 

Table 1 
WRF and CMAQ configurations used in this study.  

WRF CMAQ 

Micro Physics WSM 6-class Aerosol Module AERO5 

Cumulus Scheme Kain-Fritsch Chemical Mechanism SAPRAC 99 
Long-Wave Radiation RRTMG Advection Scheme YAMO 
Short-Wave Radiation RRTMG Horizontal Diffusion Multiscale 
PBL Scheme YSU Vertical Diffusion Eddy   

Cloud Scheme RADM  

Table 2 
Descriptions of a set of air quality simulations performed in this study.  

Run Description 

Base  - Simulations with 100% emissions in the 27- and 9-km domains 
Sensitivity - Simulation with 50% reduced emissions for the 27-km domainSi-

mulation for the 9-km domain with the boundary conditions from the 
27-km simulation with/without emission perturbations 

(i.e., base and sensitivity simulations for the 27-km domain).  
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m3 at all but one observation site in Near Beijing (NRB), and the annual 
average PM2.5 concentration in China was 34.8 µg/m3 (34% lower than 
2015). The PM2.5 concentration in BTH was 44.4 µg/m3 in 2020, and it 
was a significantly (71%) lower than 2015. 

In contrast, the annual mean PM2.5 concentration of C15 in China 
decreased only by 6% (3.5 µg/m3) from 59.3 to 55.8 µg/m3 during 
2015–2020. This led to steady increases in annual PM2.5 deviations 
between the observation and C15 from 6.6 µg/m3 (13% NMB) in 2015 to 
21.0 µg/m3 (60% NMB) by 2020. The annual PM2.5 concentration of Kv5 
over China decreased by 2.4 µg/m3 from 42.0 to 39.6 µg/m3 over six 
years, while the relative decrease rate of 6% was equal to that of C15. 
However, C15 and Kv5 showed very different biases when compared 
with the PM2.5 observations. Kv5 underestimated the PM2.5 concentra-
tion by 10.7 µg/m3 (–20% NMB) in 2015 but began to overestimate the 
PM2.5 concentration in 2019. Then, Kv5 further overestimated the 
PM2.5 concentration by 4.8 µg/m3 (14% NMB) in 2020. The described 
deviation trend by C15 and Kv5 over six years shows two noteworthy 
results. First, air quality simulations using fixed emissions inventories 
had a limitation in reproducing the decreasing PM2.5 concentration 
trend in China. Second, the selection of an emissions inventory for an air 
quality simulation can be a major factor that determines the direction of 
biases in modeled concentrations and, in turn, influences the estimated 
impacts of upwind emission sources on the air quality in downwind 
areas. Simulation results may differ with the application of higher hor-
izontal resolution grids (Cohan et al., 2006). High-resolution simulation 
can potentially reduce differences between observed and simulated 

PM2.5 concentrations (Tan et al., 2015; Bae et al., 2020c). However, in 
this study, the PM2.5 concentrations for China were obtained from 
simulations with a 27-km horizontal resolution because of computing 
limitations. 

In South Korea, the annual mean observed PM2.5 concentration 
decreased by 26% (from 25.4 to 18.9 µg/m3) during 2015–2020. For the 
same period, C15 overestimated the annual mean PM2.5 concentration in 
South Korea in the range of 1.4 to 6.3 µg/m3 (5% to 33% NMB). Kv5 
underestimated the annual mean PM2.5 concentration in South Korea by 
5.1 µg/m3 (–12% NMB) in 2015 but showed gradual decreases in 
overestimation. In 2020, Kv5 only overestimated the annual mean PM2.5 
concentration by 0.2 µg/m3 (1% NMB). Notably, while the emission 
differences between the two simulations were relatively large, the dif-
ferences in simulated PM2.5 concentrations were 30% and 25% in China 
and South Korea, respectively. This was because PM2.5 concentrations 
included both primary PM2.5 directly emitted from the sources and 
secondary PM2.5 through chemical reactions of gaseous precursors in the 
atmosphere. 

As described above, the observed PM2.5 concentrations decreased by 
34% and 26% from 2015 to 2020 in China and South Korea, respec-
tively. The reduction rates for the simulated PM2.5 concentrations in C15 
and Kv5 over this period were the same for both China and South Korea 
at 6% and 13%, respectively. Notably, the reduction rates for the 
simulated PM2.5 concentrations in C15 and Kv5 from 2015 to 2020 were 
due to the meteorological factors as we performed our simulations 
consistent with those of previous studies that investigate the 

Fig. 3. Comparison of Chinese emissions in the CREATE 2015, REASv3, MEIC, and KORUSv5 emissions inventories. The inventory year of CREATE 2015 and REASv3 
is 2015 while the inventory years of KORUSv5 and MEIC are 2016 and 2017, respectively. 

Table 3 
WRF and CMAQ model performance evaluation over China and South Korea. The modeled 2-m temperatures and 10-m wind speeds were evaluated from 2015 to 2020 
while the simulated PM2.5 concentrations for C15 and Kv5 were evaluated for 2015 and 2016, respectively.   

Observed mean Simulated mean Mean bias NMB 
(%) 

NME 
(%) 

Correlation coefficient 
(r) 

RMSE 

2-m Temperature (◦C) 15.1 14.7  –0.4  –2.8  3.7  1.00  0.7 
10-m Wind speed (m/s) 2.9 3.2  0.3  10.6  11.6  0.90  0.4 
C15 PM2.5 (µg/m3) China  52.7  59.0  6.3  12.0  18.3  0.90  11.7 

South Korea  25.4  27.2  1.8  7.1  29.4  0.85  10.4 
SO2 (ppb) China  9.6  16.3  6.7  69.1  69.1  0.89  7.2 

South Korea  5.1  5.0  − 0.1  − 1.4  23.6  0.74  1.5 
NO2 (ppb) China  16.4  16.1  − 0.3  − 1.8  12.2  0.83  2.5 

South Korea  23.2  23.2  0.0  0.2  17.3  0.80  4.9  

Kv5 PM2.5 (µg/m3) China  48.0  39.8  − 8.2  − 17.1  18.6  0.91  12.3 
South Korea  26.0  20.0  − 6.0  –23.0  25.5  0.84  8.3 

SO2 (ppb) China  8.3  10.3  2.0  24.8  25.9  0.90  2.5 
South Korea  4.6  4.3  − 0.3  − 7.8  24.2  0.65  1.4 

NO2 (ppb) China  16.4  17.9  1.5  9.1  13.8  0.85  2.9 
South Korea  22.6  22.5  − 0.1  − 0.5  19.3  0.71  5.5  

M. Bae et al.                                                                                                                                                                                                                                     



Environment International 163 (2022) 107214

6

meteorological effects on air quality trends (Zhang et al., 2019; Bae 
et al., 2021). Wei et al. (2017), Zhang et al. (2019), and Bae et al. (2021) 
also report that, recently, meteorological conditions contribute to de-
creases in PM2.5 concentrations over China and South Korea. In general, 
wind speeds and PM2.5 concentrations are negatively correlated. Addi-
tionally, precipitation can reduce ambient PM2.5 concentrations via wet 
deposition (Kim et al., 2017a; Chen et al., 2020). In South Korea, the 
easterly winds often cause an inflow of relatively clean air from the East 
Sea. We estimated the meteorological factors accounted for 18% (=6/ 
34 × 100) and 50% (=13/26 × 100) of the decrease in the observed 
PM2.5 concentrations over the past six years in China and South Korea. 
Subsequently, the effects of emission reductions were estimated as 82% 
(=100 – 18) and 50% (=100 – 50) for China and South Korea, respec-
tively. We noted that the 50% PM2.5 concentration reduction in South 
Korea includes the effect of emission changes in the upwind areas. At the 
same time, the decrease in the PM2.5 concentrations in the upwind areas 
are likely due to their own emission reductions and those were not small. 
Therefore, it is important to evaluate the impacts of emission reductions 
on PM2.5 concentrations in South Korea by separating contributions 
from upwind emissions from the overall contribution to assess the net 
effects of emission reductions in South Korea. In order to separate the 
impacts of respective emission reductions in China and South Korea, it 
was necessary to estimate these through more air quality simulations 
and analyses. However, it was difficult to quantitatively assess the in-
dividual contributions because of the complex nature of chemical re-
actions as well as the dependency of modeled PM2.5 concentrations on 
meteorology, foreign emissions, and domestic emissions. Further in-
vestigations are needed to separate the impacts of foreign and domestic 
emissions on South Korea. 

3.4. Upwind PM2.5 contribution 

The range of annual mean U ZOCBase,C15 was estimated to be 
13.7–15.9 µg/m3 and U ZOCBase,Kv5 was 8.5–10.7 µg/m3 (Fig. 5a) during 
2015–2020. The range of annual mean U ZOCAdj,C15 was 8.6–14.1 µg/ 
m3 during 2015–2020. The range of differences between U ZOCBase,C15 

and U ZOCBase,Kv5 was 4.1–5.5 µg/m3 (36–55%). However, after 
adjustment, the differences of U ZOCAdj,C15 and U ZOCAdj,Kv5 decreased 
to 0.4–1.1 µg/m3 (4–9%). These results suggest that similar foreign 
contributions can be estimated if the upwind contribution adjustment is 
made with the proposed adjustment approach in this study regardless 
the difference in emissions in the upwind area. 

Since the annual U ZOCAdj,C15 and U ZOCAdj,Kv5 were similar, we 
describe the evolution of adjusted foreign contributions over time 
withU ZOCAdj,Kv5. In 2015, the U ZOCAdj,Kv5 was 13.5 µg/m3. Then, the 
U ZOCAdj,Kv5 decreased to 11.9 and 11.6 µg/m3 in 2016 and 2017, 
respectively. Thereafter, from 2018 to 2020, the U ZOCAdj,Kv5 decreased 
to less than 9.0 µg/m3. Particularly, the U ZOCAdj,Kv5 in 2020 became 
the lowest during the study period. As various studies have reported, in 
2020, anthropogenic emissions and PM2.5 concentrations decreased due 
to the COVID-19 pandemic (Kang et al., 2020; Huang et al., 2021; Kim 
et al., 2021c). If the entire analysis period was divided into two periods: 
2015 to 2017 (P1) and 2018 to 2020 (P2), the average U ZOCAdj,Kv5 was 
lower by 31% (3.8 µg/m3) during P2 compared with P1. 

The PM2.5 concentrations in South Korea are relatively high in spring 
and winter but relatively low in summer (Bae et al., 2020a; Kumar et al., 
2021). The seasonal mean U ZOCBase,Kv5 was highest in winter (13.6 µg/ 
m3), followed by spring (13.2 µg/m3), autumn (7.5 µg/m3), and summer 
(4.5 µg/m3) (Fig. 6). The seasonal mean U ZOCAdj,Kv5 increased by 
0.2–1.2 µg/m3. The order of seasonal mean foreign contributions is 

Fig. 4. Spatial distributions of the (a) annual average observed PM2.5 concentrations, (b) normalized mean bias (NMB) for C15, and (c) NMB for Kv5 from 2015 to 
2020. The mean values over China and South Korea are denoted by letters for each panel. Red and blue letters in (b) and (c) emphasize positive and negative values, 
respectively. 
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consistent with that without adjustment, and the same is true for C15. 
Changes in U ZOCAdj,C15 and U ZOCAdj,Kv5 were most prominent in the 
spring, 4.8 and –1.2 µg/m3, respectively. In general, spring had high 
foreign contributions (Bae et al., 2020a; Kumar et al., 2021) since esti-
mated foreign contributions in spring are significantly affected by the 
uncertainty in the upwind simulation. Overall, the seasonal mean 
foreign contributions in Kv5 and C15 showed a difference of 3.7–6.4 µg/ 
m3 before adjustment but the difference reduced to 0.4–1.7 µg/m3 after 
adjustment. 

3.5. PM2.5 concentration in downwind area and foreign contributions 

The range of annual PM2.5 concentration deviations between the 
observed values and C15 for South Korea during the study period 
improved from 1.4 to 6.3 µg/m3 (before adjustment) to –1.8–1.9 µg/m3 

(a) Annual mean foreign contributions 

(b) Annual average PM2.5 concentrations

(c) Annual mean relative foreign contributions 

Fig. 5. Time-series and scatter plots for (a) the annual mean foreign contributions to annual average PM2.5 concentrations, (b) annual average PM2.5 concentrations, 
and (c) relative foreign contributions to annual average PM2.5 concentrations in South Korea from 2015 to 2020 with and without adjustments in modeling results in 
C15 and Kv5. “Base” indicates modeling results in C15 and Kv5 without adjustment. “Adj” indicates modeling results with adjustment. Black dots and gray lines 
represent the observed PM2.5 concentrations. 

Fig. 6. Seasonal variations in the foreign contributions to PM2.5 in South Korea 
from 2015 to 2020 before and after adjustment. 
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(after adjustment), as shown in Fig. 5(b). From 2015 to 2018, the range 
of annual PM2.5 concentration deviations between the observation and 
Kv5 for South Korea was between –5.0 and –3.4 µg/m3 before adjust-
ment and decreased to –4.0 to –0.6 µg/m3 after adjustment. From 2019 
to 2020, this deviation of Kv5 slightly increased from –2.6 and 0.2 µg/m3 

before adjustment to –3.2 and –0.9 µg/m3 after adjustment. The annual 
mean PM2.5 concentrations of C15 in South Korea were 5.9–7.3 µg/m3 

higher than those of Kv5 before adjustment. However, after adjustment, 
the differences were reduced to less than 2.8 µg/m3. Although by the two 
simulations the foreign contributions estimated were similar to each 
other after adjustment, the PM2.5 concentrations in South Korea still 
showed a difference of approximately 2.0 µg/m3. The differences in the 
domestic contributions estimated by the two simulations were 
1.6–2.0 µg/m3, which could be attributed to indirect effects (i.e., 
gaseous precursors or HNO3 converted to NO3

–) after migration of PM2.5 
precursors from the upwind to the downwind area as well as the direct 
effects of upwind PM2.5 depending on the level of emissions in the up-
wind areas (Chen et al., 2014; Uno et al., 2020; Kim et al., 2021b). In 
addition, the detailed horizontal and vertical distributions of the emis-
sions used in the two simulations could yield differences. In contrast, 
both simulations underestimated the PM2.5 concentrations in South 
Korea after the adjustment of the upwind contributions, possibly 
resulting from an underestimation of the emissions in the downwind 
area. Accordingly, the relative foreign contribution may be lower than 
the value estimated in this study. 

Before adjustment, the relative foreign contributions (RU ZOCBase) 
were 51–58% for C15 and 45–51% for Kv5 during 2015–2020 (Fig. 5c). 
After adjustment, the relative foreign contributions (RU ZOCAdj) were 
43–52% for C15 and 44–55% for Kv5. The differences in the relative 
foreign contributions by the two simulations were 5–8% before the 
adjustment but decreased to less than 3% after adjustment. After ac-
counting for the adjustments to results of C15 and Kv5, the relative 
foreign contributions decreased by 9% in 2018 as compared to 2015 

while the differences between 2019 and 2020 were less than 1%. The 
adjusted relative domestic contributions (RD ZOCAdj) were 48–57% for 
C15 and 45–56% for Kv5. 

3.6. Short-term contribution adjustments: Adjustment of daily mean 
contribution during the COVID-19 pandemic 

With a surge in confirmed COVID-19 cases in China at the beginning 
of 2020, a lockdown was implemented to restrict movement between 
regions on January 23, 2020. Huang et al. (2021) and Kim et al. (2021c) 
estimated that NOx emissions in China decreased by more than 50% due 
to COVID-19 restrictions. Kang et al. (2020) also reported that 16% and 
21% of the PM2.5 concentrations decreased during lockdown in China 
and South Korea, respectively, because of emissions reductions. How-
ever, the existing bottom-up emissions inventories are not able to 
consider these drastic emissions changes. Therefore, we attempted to 
perform daily upwind contribution adjustments from December 2019 to 
March 2020 as well as evaluated applicability of our proposed adjust-
ment approach to short-term cases. The analysis period was divided into 
before and after the implementation of lockdown (January 23, 2020). 
The analysis results presented below are based on Kv5 only because no 
significant difference was observed when the same analysis was per-
formed on the C15 results. 

The daily average PM2.5 concentrations in China before and during 
lockdown was 65.0 and 42.4 µg/m3, respectively (Fig. 7). The deviation 
of PM2.5 concentrations between the observation and Kv5 in China 
increased from 2.5 µg/m3 (4% NMB) to 14.9 µg/m3 (35% NMB) when 
compared before and during the lockdown. In contrast, the observed 
PM2.5 concentrations in South Korea was 27.2 and 22.6 µg/m3 before 
and after the beginning of lockdown, respectively. The deviation of 
PM2.5 concentrations between the observation and Kv5 increased from 
–0.8 µg/m3 (–3.0% NMB) to 3.5 µg/m3 (15% NMB) when compared 
between before lockdown and during the lockdown. The increase in the 

(a) China 

(b) South Korea 

Fig. 7. Observed and simulated daily PM2.5 concentrations before and after adjustment from December 2019 to March 2020: (a) China and (b) South Korea. The gray 
line indicates the beginning of lockdown in China. “1)” and “2)” in the legend indicate the mean PM2.5 concentrations in China and South Korea before and dur-
ing lockdown. 
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deviation during the lockdown must be due to the reduction in air 
pollutant emissions from China that were not reflected in the existing 
emissions inventories as described above. Since South Korea didn’t have 
the lockdown policy implemented for the same period, the aforemen-
tioned discrepancies of PM2.5 concentrations in China likely propagated 
into South Korea. 

During the lockdown, the U ZOCBase,Kv5 was 14.3 µg/m3 (55%) and 
U ZOCAdj,Kv5 was 10.1 µg/m3 (46%). As the foreign contribution 
decreased by 4.2 µg/m3 with adjustment, the NMB of Kv5 for PM2.5 
concentrations in South Korea improved from 15% to –4% during the 
lockdown. The results of this study suggest that the upwind contribution 
adjustment method proposed in this study can assess contributions 
accurately by improving the estimated concentrations in the upwind 
area even for a short-term episode when abrupt changes in the upwind 
emissions conditions occur. The number of confirmed COVID-19 cases in 
South Korea began to increase from the end of March 2020. Therefore, 
we believe that the effect of the COVID-19 pandemic on the reduction of 
South Korean emissions was not significant for the modeling period in 
this study. 

4. Conclusions 

In this study, we proposed an upwind contribution adjustment 
method to consider air quality simulation uncertainties in the upwind 
area (e.g., China) and applied the method to estimate the foreign 
contribution to the PM2.5 concentrations in the downwind area (e.g., 
South Korea) from 2015 to 2020. While the observed annual mean PM2.5 
concentrations in China decreased by 34% over the past six years, the air 
quality simulations (i.e., C15 and Kv5) without considering annual 
emission changes showed only a 6% decrease. This indicates that air 
quality simulations with the existing emissions inventories are not suf-
ficient to reflect rapid changes in the PM2.5 concentrations in China. 

From 2015 to 2020, the annual foreign contributions in C15 to the 
PM2.5 concentrations in South Korea were 13.7–15.9 µg/m3 (51–58%) 
before adjustment while those contributions decreased to 8.6–14.1 µg/ 
m3 (43–52%) after adjustment. In Kv5, the annual foreign contributions 
were 8.5–10.7 µg/m3 (45–51%) before adjustment but changed to 
8.0–13.5 µg/m3 (44–55%) after adjustment for the same period. The 
mean adjusted foreign contribution from 2018 to 2020 decreased by 
more than 30% compared to that from 2015 to 2017, which indicates 
that the foreign contributions to the downwind area have declined. 
Foreign contributions between C15 and Kv5 before adjustment differed 
by 4.1–5.5 µg/m3. However, such differences decreased to 0.4–1.1 µg/ 
m3 after adjustment. This suggests that foreign contributions can be 
evaluated consistently through the proposed upwind contribution 
adjustment even though simulated upwind concentration levels are 
different between C15 and Kv5. 

Moreover, the result of applying upwind contribution adjustments 
for a short-term case (i.e., COVID-19 pandemic) demonstrated that the 
mean PM2.5 concentration deviation between the observation and sim-
ulations (i.e., Kv5 and C15) in South Korea improved from 16% to –4% 
during the lockdown. However, even after adjusting the upwind con-
tributions, the PM2.5 concentrations of C15 and Kv5 in South Korea were 
underestimated. This suggested that air pollutant emissions from South 
Korea were more likely underestimated. Therefore, the actual domestic 
contributions would be higher than the estimated contributions. Sub-
sequently, we speculated that the relative foreign contributions, in re-
ality, are lower than the values estimated in this study. 

According to the results of this study, the proposed method for up-
wind contribution adjustment helps to reduce the PM2.5 concentration 
deviation between observation and simulation over both short- and 
long-term scales and to interpret the impacts of emission reductions on 
air quality trends accurately. Although we estimated the foreign con-
tributions using the BFM, which is a relatively simple simulation 
method, the upwind contribution adjustment proposed in this study can 
be universally applied as the input is independent of the analytical tool 

or method except for the following caveats. The upwind contribution 
adjustment approach proposed in this study considered non-linear 
changes between the emissions and concentrations partially based on 
the modeled source-receptor relationship under a given emission con-
dition. However, the adjustment approach does not directly account for 
the uncertainty related to secondary PM2.5 formation occurring during 
the long-range transport of air pollutants from the upwind to the 
downwind areas. 
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